

Encouraging Heat Pump Water & Space Heating

2018 Council Study Issue (ESD 18-01)

Melody Tovar Regulatory Programs Division Manager

Council Study Session, November 27, 2018

Overview

- Background and Context
- Overview of Heat Pump Technology
- Costs & Benefits
- Approaches to Encouraging Heat Pump Technology
- Discussion

Background

- Recap of Study Issue
 - Inspired by Sustainability Speaker Series event
 - Proposed by Sustainability Commission
 - Approved by Council at 2018 Study Issues workshop
 - Lead Department: ESD
 - Support Department: Community Development
- Silicon Valley Clean Energy (SVCE)
 - Conducted the study
 - Beneficial for all SVCE member agencies
- Interest growing across Bay Area, California, and US

GHG Benefits of Heat Pump Technology

CA Residential Natural Gas Consumption

- Water and Space Heating =
 - *86% of residential gas usage
 - •68% of commercial gas usage

Sources: 2009 California Residential Appliance Saturation Study; 2006 California Commercial End Use Survey; Building an Electric Future, K. Rider, California Energy Commission (2018)

GHG Context

- What if we replace all water & space heating with heat pump technology?
 - *23% Reduction
 - *165,000 MTCO2e Reduction

Climate Action Playbook coming soon

Six Key Strategies

Promoting Clean Energy

Managing Resources Sustainably

Decarbonizing Buildings

Empowering Our Community

Adapting to a Changing Climate

Get your game face on!

Encouraging Heat Pump Water & Space Heating Study Findings

Preview – Study Findings

- Heat pumps are highly-efficient, proven technology dominating the market in most other parts of the world
- Replacing natural gas with heat pump electric appliances powered by clean, renewable electricity is essential to decarbonize buildings
- Heat pump appliances can be economical in our region, especially when:
 - installed in new construction
 - programmed to use electricity at off-peak times
 - paired with on-site solar PV
 - replacing electric resistance appliances
- SVCE is a ready partner and initiating a pilot program.

Renewable Electricity + Heat Pumps = Future

Heat Pump Technology Overview

Heat Pump Water Heater

Visual of Heat Pumps Appliances

Space Heating/Cooling

Water Heating

Heat pump appliances look similar to standard household appliances

Global Market for Heat Pumps

- Proven technology, around for decades
- Space heaters/AC dominate market across most parts of the world
- In U.S., adoption is lower but gaining market share

Heat pump space heating/AC worldwide

Economics of Heat Pump Appliances

- To assess economics, SVCE conducted:
 - literature review
 - cost-effectiveness analysis of heat pump vs. natural gas appliances
- Cost-effectiveness analysis accounted for:
 - All up-front and ongoing costs over the appliance lifetime for average household
 - Up-front: equipment, sales tax, permitting, installation
 - Ongoing: energy, operation & maintenance (O&M)
 - Pairing heat pumps with on-site solar photovoltaics (PV)
 - Used SVCE electricity mix and local retail rates, sales tax, permitting costs
 - Appliance selection & performance optimized for SVCE cities, climate

Residential Water Heating

^{*}Gas tankless have longer estimated life; annualized costs shown on following slide.

Heat pump water heaters have higher up-front but lower ongoing costs.

[^] Includes federal tax incentive and PG&E rebate.

Residential Water Heating

Heat pump water heaters can be most cost-effective option for an average household.

Residential Space Heating

Heat pump space heating has higher up-front but lower ongoing costs. Can be most cost-effective option, especially when combined with AC.

Barriers to Retrofits

- Significant additional costs to retrofit a building:
 - \$500-\$2,000 for wiring dedicated circuits to appliance locations
 - \$3,000-\$5,000 for potential electrical panel upgrade
- Unique needs of air-source heat pumps complicate retrofits, including requirements for:
 - condensate drain
 - ambient air surrounding appliance
- Appliances typically replaced on emergency-basis with in-kind technologies

Advantages of All-Electric New Construction

- Direct cost savings of \$5,000-\$8,000 from no utility connection, plumbing for natural gas
- Simpler design and permitting given single fuel
- Design optimized for electric heat pump appliance requirements
- Improved indoor air quality from dehumidification, eliminating indoor combustion
- Managing electric building loads can provide grid services, including emissions reductions, enhanced reliability
- Additional, modest cost savings from no appliance venting

Cost-Benefit Analysis Conclusions

- Heat pump appliances can be economical in our region, especially when:
 - installed in new construction
 - programmed to use electricity at off-peak times
 - paired with on-site solar PV
 - replacing electric resistance appliances
- All-electric buildings offer significant health, safety and comfort benefits
- Significant economic and non-economic barriers for retrofitting existing buildings

Public Outreach

Encouraging residents to plan ahead for installation of heat pump water and space heating systems involves a number of important considerations:

- building electrification context
- policies, programs and outreach goals
- target audiences (contractors, plumbers, electricians, solar installers, designers, architects, engineers, property managers, residents and business owners)
- outreach approach and channels

Building Electrification Context

'FutureFit' All-Electric Home

EV Charging

Heat Pump Space Conditioning

Heat Pump Water Heating

High Capacity Panel/Controls

Appliances & Induction Cooking

Solar and Storage

Heat pump space and water heating are key elements in all-electric construction

- all-electric construction emerging in building policies and codes in CA
- market barriers include lack of awareness, trade skills, building infrastructure readiness
- complexity and cost vary widely in new construction, remodel and retrofit
- outreach should communicate all-electric vision

Local Policy – Example Financial Incentives

Incentive Type	Offered By		Value	Result
RETROFIT				
Elec Resistance → Heat Pumps	PG&E, SMUD, CPUA, Silicon Valley Power	\$300-\$500		Mixed, despite easiest scenario
Natural Gas → Heat Pumps	CPUA (open), SMUD	\$1,500		Minimal, incentive limited to appliance
Natural Gas → Heat Pumps + Service Panel	SMUD (opened mid-2018), SVCE (coming 2019), San Jose/SVEW (coming 2019)	\$3,0	000-\$4,500	Higher adoption expected
NEW CONSTRUCTION				
Heat Pumps	n/a		incentives ilable	Cost effective already

Local Policy – Key Levers

Retrofit

- Financing options
- Permitting improvements
 - Streamlined
 - Lower cost
 - Expedited

New Construction

- Increased Floor Area
- Access to financing for meeting green building standard
- Reach Codes promoting electric appliances

Local Policy - Permitting

Business as usual

- Over the Counter
- Average \$265, circumstantial
- Two tasks (one electric, one plumbing)
- Rarely seen

Differentiators

- Online applications
- Flat rate for HPWH
- Single task (combined application)
- HPWH-specific trainings
- HPWH inspection checklists

Given overall low volume, a major increase in adoption will likely warrant additional inspector and permit reviewer training.

Heat Pump Water Heater Pilot

Objectives

- Clear customer economic, health, and environmental benefits of HPWH
- Inclusion of HPWH in larger campaign focused on beneficial electrification
- Education and Awareness for consumers, installers, and inspectors
- Increased support within the supply chain

Proposed Pilot (Launching early 2019)

- 2 years; HPWH + Service panel Upgrade costing less than gas retrofit
- Incentive: \$3,000-\$4,500
- Target: 90 Market rate + 10 installations in CARE/FERA customers
- Includes several outreach elements:
 - Customer-facing Benefits Guide
 - Building Inspector Trainings & Community Workshops
 - Pro-active sales channel engagement
 - Incentives encouraging supplier participation

Summary

- Heat pumps are a viable technology growing in market share worldwide
- Cost-effective for electrifying space and water heating, especially for new construction or when paired with solar
- Key barriers for retrofits include:
 - High cost of wiring and panels
 - Space considerations
 - Lack of preparedness for emergency replacements
- SVCE conducting incentive-based pilot program to specifically target cost barriers

Proposed Next Steps

- Staff Proposed next steps:
 - 1. Decarbonizing Buildings is a Climate Action Playbook Strategy
 - Evaluating Electrification and Heat Pump Technology as component of Green Building Program
 - Staff working with SVCE on pilot program, potential "reach code", and outreach approaches
 - 4. Information Only RTC to Council
- Council Feedback
 - Are we focused on the right actions to encourage heat pump technology?
 - Is there more information needed to guide decisions?