

EXISTING IDEC CAMPUS



100' min. to street

SCOPE OF WORK and IMPROVEMENTS PROPOSED

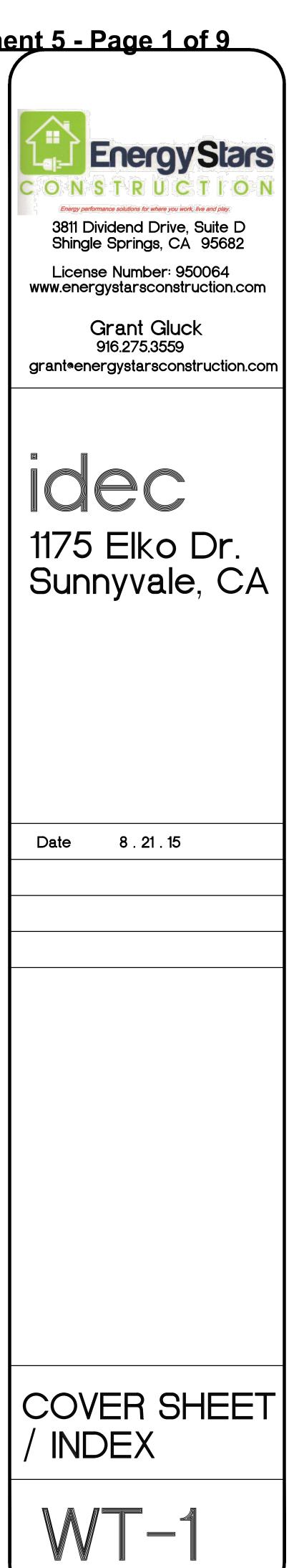
PROVIDE CLEAN ENERGY BY WIND GENERATION AT EXISTING IDEC SITE PROVIDE ENERGY SAVINGS THROUGH INTEGRATION OF ASCETICALLY PLEASING, PEDESTRIAN SCALED WIND TURBINES AT EXISTING PLAZA LOCATION. SMALL CLUSTER OF 6 TURBINES PROPOSED AT 100 FEET FROM STREETS.

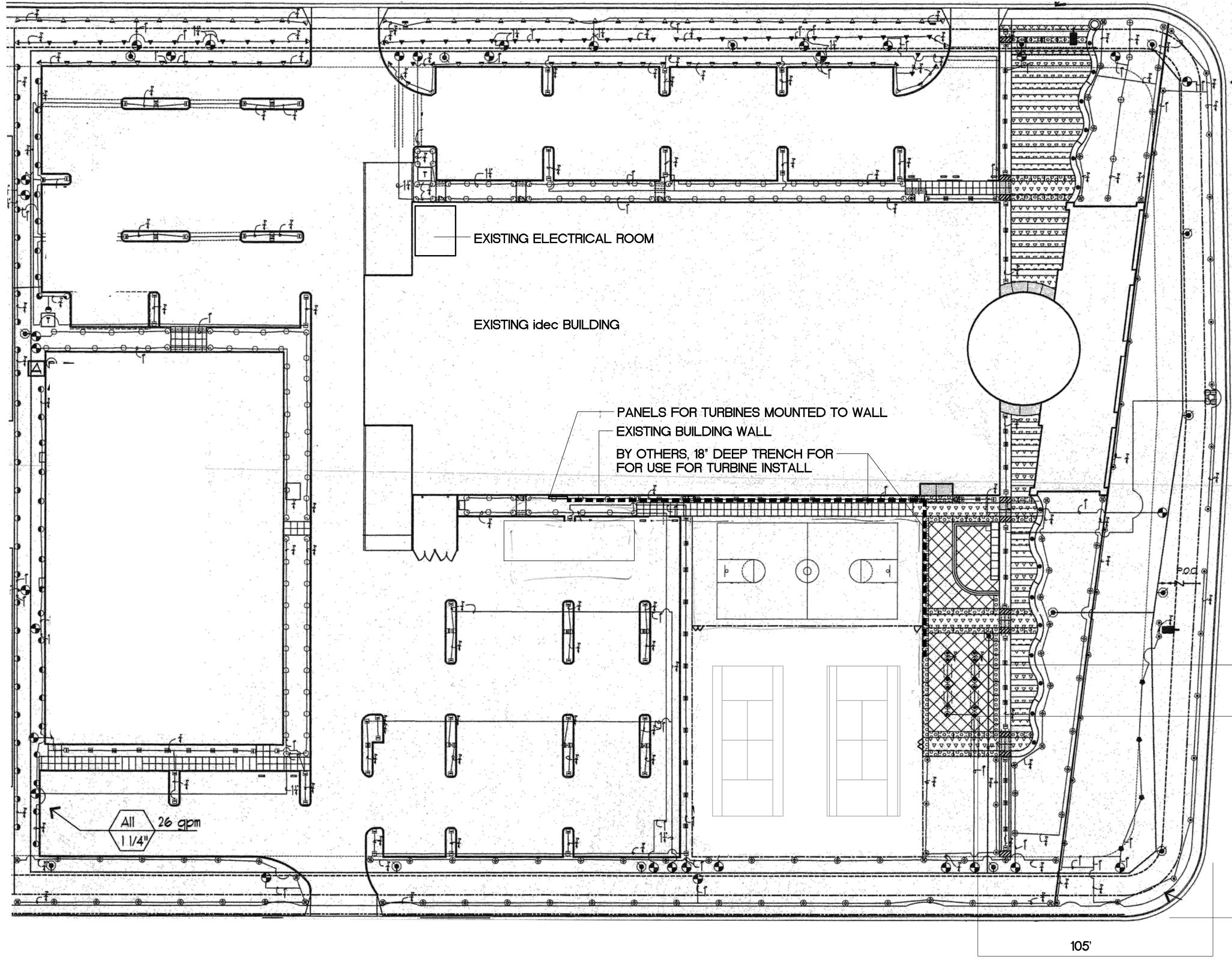
EXISTING PLAZA TO REMAIN

WIND TURBINE COLOR TO COMPLIMENT PLAZA PEDISTAL CONCRETE BASE

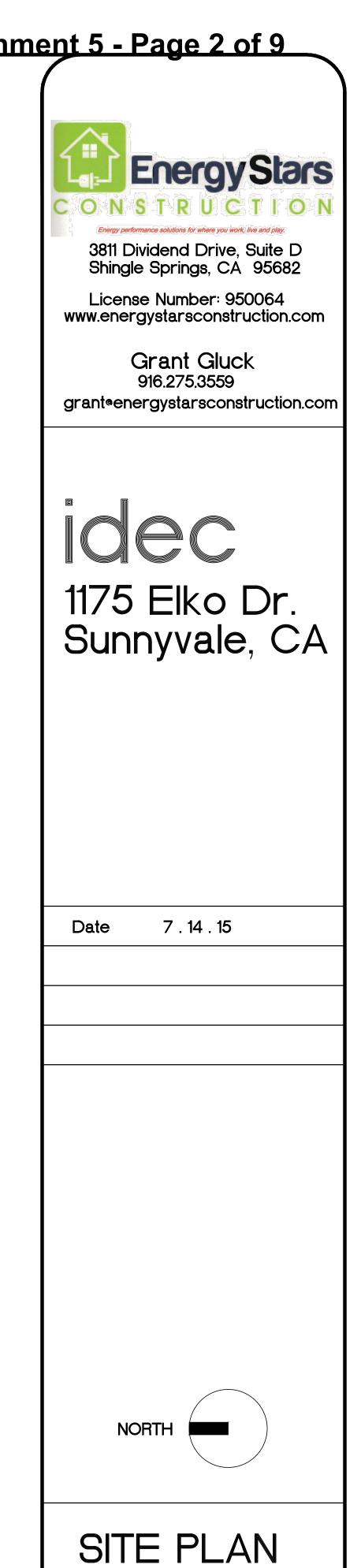
Attachment 5 - Page 1 of 9

INDEX OF DRAWINGS


WT-1	COVER SHEET / INDEX
WT-2	SITE PLAN
WT-3	DATA SHT. ELECTRICAL
WT-4	FOUNDATION
WT-5	FOUNDATION DESIGN
WT-6	FOUNDATION DESIGN
WT-7	LATERAL ANALYSIS
WT-8	LATERAL ANALYSIS
	/ TOWER ANALYSIS
WT-9	TOWER ANALYSIS


CONTRACTOR CONTACT

Grant Gluck 916.275.3559 grant@energystarsconstruction.com


TURBINE TYPICAL IMAGES

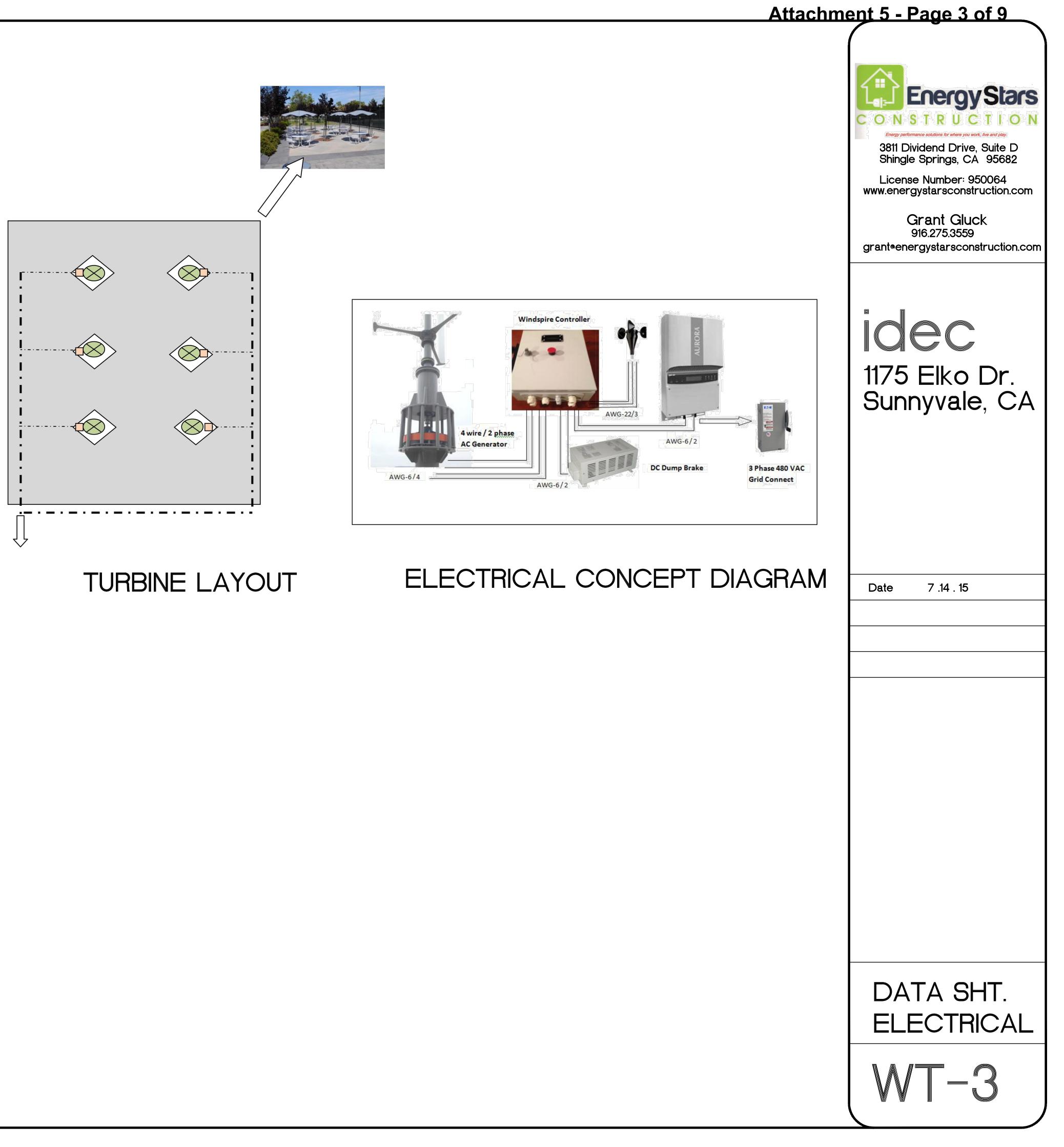
ANVILWOOD AVE.

Attachment 5 - Page 2 of 9

WT-2

> \mathbf{C} \square Ο $\mathbf{\nabla}$ Ш

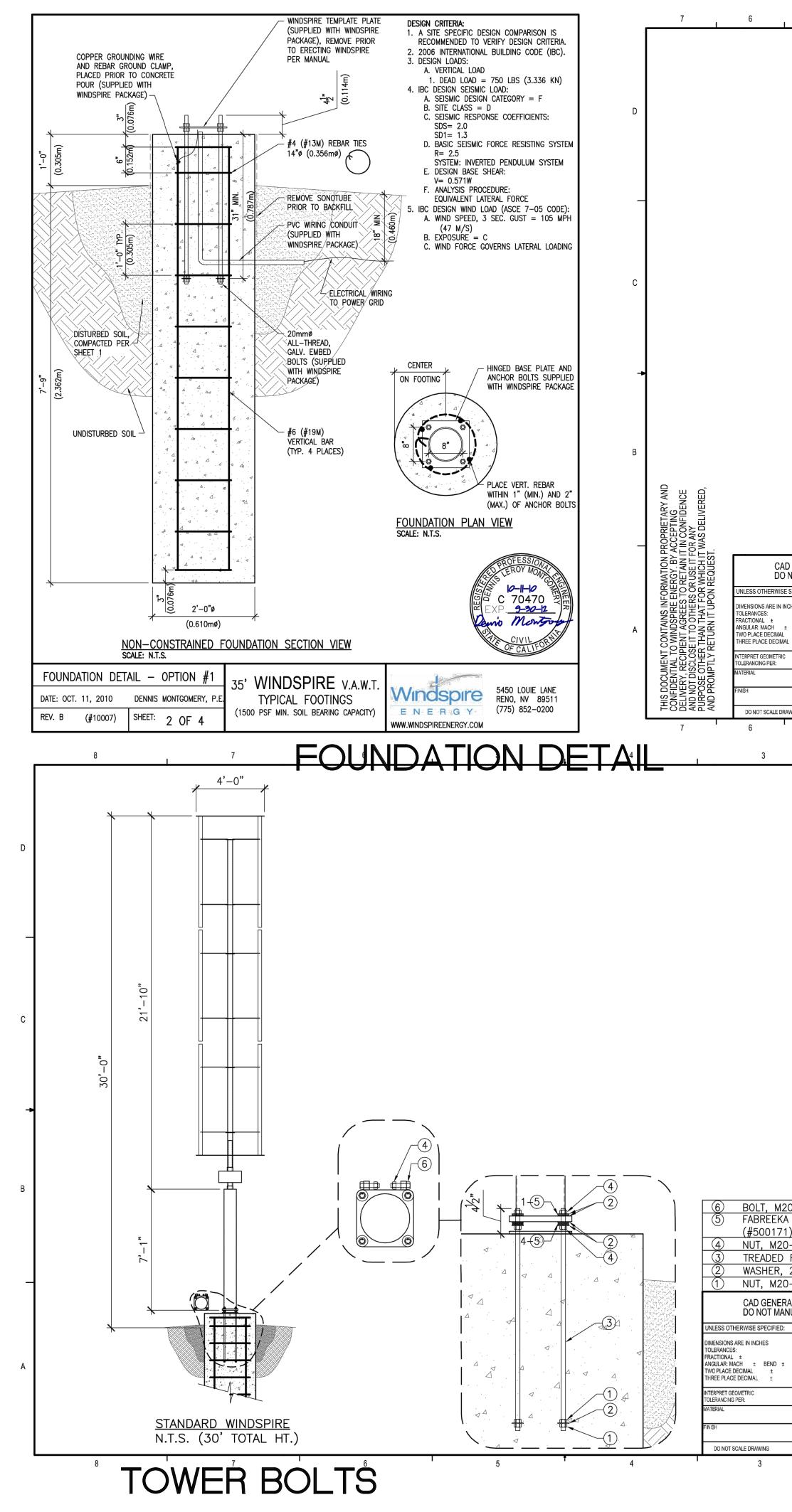
6 WIND TURBINES SEE SHEET WT-3



Technical Data Sheet - Proprietary & Confidential Windspire[®] Wind Turbine 2.0kw and 1.2kW - Standard (30 ft.) April 2010

orial Spacifications				
erial Specifications: Mechanical Item	Size	(Grade	
Top Shaft:	3.5" OD x 0.120" Wall x 230" Lg.	Steel, ASTM A513 Type 5		
Bottom Shaft:	3.5" OD x 0.500" Wall x 114" Lg.		ГМ А513 Туре 5	
Tower:	8.625" OD x 0.188" Wall x 84" Lg.		M A500 Grade B	
Base Plate:	10" sq. x 1" Thick	-	ASTM A36	
Anchor Bolts:	(4) M20 x 1m Length (4.5" projection)		898.1 - Class 8.8	
Airfoils:	5" Chord x 78" Length		um, 6063-T6	
Airfoil Struts:	1.5" Width x 0.25" Thick	Alumin	um, 6061-T6	
Elastomer Dampers:	2" OD x 0.75" ID x 0.125" Thick	Fabreeka Washer	- (5) at each anchor bolt	
xx -	Prot 4	Cut-In Wind Speed =	(4 below, 1 above base plat 8.5 mph (200 rpm)	
		Cut-Out Wind Speed =	31 mph (420 rpm)	
ŵ		Design Peak Gust =	105 mph	
Laf		Lateral Force (105mph) =	757 lbs.	
	Peak Overtu	uring Moment (105mph) =		
		Approx. Weight =	630 lbs	
		Rated Power (RP) =	1,200 Watts	
E C		Wind Speed @ RP =	24 mph	
		1st Resonance Mode =	60 rpm (+/-)	
		2nd Resonance Mode =	280 rpm (+/-)	
		$D_{rot} =$	48 in	
		$L_{rot} =$	240 in	
		$L_{af} =$	78 in	
Š.		L _{af_st} =	46 in	
T N		$L_{af_{oh}} =$	16 in	
		H _{rot} =	120 in	
		H _{gen} =	108 in	
Hrot	HQ HQ H	H _{bp} =	96 in	
	五 ABsp / 王	$H_{\rm f} =$	12 in (adjustable with engineering)	
		ABsp =	8 in	

Note: Product variations, revised base connections or additional connections, and/or removal of Fabreeka dampening washers will effect the rotordynamics and will result in voiding of the warranty and damage to the unit. Prior to any revisions or modifications, consult with engineering department.



GENERAL:

LOCA UNID	ition of underground util Entified existing undergro	RACTOR SHALL NOTIFY THE APPROPRIATE UTILIT LITIES. THE CONTRACTOR SHALL NOTIFY THE OW DUND UTILITIES ARE DISCOVERED. MINIMUM STANDARDS OF THE FOLLOWING CODE	NER IMMEDIATELY IF ANY	Y		
20	06 INTERNATIONAL BUILDING	CODE (IBC)				
MA	D ANY OTHER REGULATING A Y HAVE AUTHORITY OVER AN RK.					
		SHORING/BRACING WHERE NEEDED DURING CONS	STRUCTION ACTIVITIES.			
FOUNDATIONS:						
		BEARING PRESSURE = 1500 PSF (72 KPa) FO	OUNDATIONS SOILS SHALL BE			
FOR FROST ADJACI ALL DISTUR LIFTS,	FREE OF ORGANIC SILTS, ORGANIC CLAYS, OR PEAT. FOR FROST PROTECTION, THE BOTTOM OF ALL EXTERIOR FOOTINGS SHALL BE A MINIMUM OF 24" (0.610m) BELOW ADJACENT FINISHED GRADE OR GREATER DEPTH DEPENDING UPON THE LOCAL JURISDICTION. ALL DISTURBED SOILS SURROUNDING FOOTINGS SHALL BE MOISTURE CONDITIONED AND COMPACTED IN 12" (0.305m) LIFTS, TO REACH 95 PERCENT OF THE MAXIMUM DENSITY AS DETERMINED BY ASTM D1557. BRACE SONATUBE OR FORM WALLS AS REQUIRED DURING BACKFILLING OPERATIONS.					
CONCRETE:						
	CRETE WORK SHALL CONFORI ENTAL REQUIREMENTS:	M TO THE LATEST EDITION OF ACI 318, EXCEPT	AS MODIFIED BY THE FOLLOW	ING		
		NORMAL WEIGHT CONCRETE. BLISHED IN ACCORDANCE WITH CHAPTER 5				
	OR I/II PER ASTM C-150					
3 INCHE	S (0.076m) – PRIOR TO AI	DDITION OF WATER-REDUCING ADMIXTURE				
IF SULFATE	CONCENTITRATIONS IN SOILS IT SHALL BE USED.	IN OF WATER-REDUCING ADMIXTURE	0 BE GREATER THAN) TYPE V			
1. FLYAS	SH PER ASTM C-618	n				
MAXIMUM S		NCH (0.025m) PER ASTM C—33				
1. FOUN		00 KPa) — FOR WORKABILITY, NOT STRENGTH				
	CRETE DESIGN STRENGTH =EMENT FOR CONCRETE:	2500 PSI (17,200 KPa) — NO SPECIAL INSPEC	TION			
		PORTED IN FORMS SPACED WITH NECESSARY AC CCORDANCE WITH CRSI "MANUAL OF STANDARD				
2. DEFO	RMED BARS - ASTM A615, EINFORCEMENT LAP = 44 BA	GRADE 60 KSI (420 MPa)	(,			
MINIMUM CO	ONCRETE COVER OVER REINF TE CAST AGAINST EARTH =	TORCEMENT:				
CONCRE	TE EXPOSED TO EARTH OR	WEATHER = $1\frac{1}{2}$ INCHES (0.038m) Y VIBRATED INTO FOUNDATIONS AND FORMS				
	D MISCELLANEOUS STEEL:	I VIDRATED INTO FOUNDATIONS AND FORMS		D PROFESSION		
		CONFORM TO THE AISC AND AWS SPECIFICATIONS IRBINE DESIGNS BY WINDSPIRE ENERGY.		N-11-10		
PROVIDE E7	70XX ELECTRODES FOR ALL	WELDS, IN ACCORDANCE WITH AWS D1.4. ., BOLTS FOR ALL STEEL TO FOUNDATION CONN		C 70470 ₹ XP 9-30-1 2		
130 890.1,	CLASS B.O GALV. OR EQUAL	, DULIS FOR ALL SIELL TO FOUNDATION CONN		no Montrop		
			No.	TE CIVIL OF CALIFORNIA		
FOUNDATIO	ON NOTES					
DATE: OCT. 11, 2010	DENNIS MONTGOMERY, P.E.	35' WINDSPIRE V.A.W.T. TYPICAL FOOTINGS	Windspire	5450 LOUIE LANE RENO, NV 89511		
REV. B (#10006)	SHEET: 1 OF 4	(1500 PSF MIN. SOIL BEARING CAPACITY)	E N E R G Y WWW.WINDSPIREENERGY.COM	(775) 852–0200		

<i>F</i>	ttachment 5 - Page 4 of 9
5 4 3 2 1	
t d'-0"# t d'-0	□ Image: Constraint of the second state
HO-DE GENERATOR & INVERTER T-DE GENERATOR & INVERTER TOWER (8§"%) 1.2kW_WINDSPIRE 30' HT.	I I I I I I I I I I I I I I I I I I I
SPECIFIED: NAME DATE SHES DRAWN DLM 4-2-10 SHES DRAWN DLM 4-2-10 BEND ± ENG APPR. TITLE: AA AA SOFT STANDARD UNIT COMMENTS: SIZE DWG. NO. REV A 3 2 1	A
THIS DOCUMENT CONTAINS INFORMATION PROPRIETARY AND CONFIDENTIAL TO WINDSPIRE ENERGY. BY ACCEPTING DELIVERY, RECIPIENT AGREES TO RETAIN IT IN CONFIDENCE AND NOT DISCLOSE IT TO OTHERS OR USE IT FOR ANY	Date 7.14.15
PURPOSE OTHER THAN THAT FOR WHICH IT WAS DELIVERED, AND PROMPTLY RETURN IT UPON REQUEST.	
c	
4	
В	
D-2.5x65, HEX HD., ZINC, C8.8 (#500124) WASHER, 22mm I.D. x 50mm O.D. x 3.2mm THICK	
-2.5x20, NYLOC HEX HD., ZINC, C8.8 (#500125) ROD, M20-2.5x1m, ZINC, C8.8 (#500121) 21mm I.D. x 50mm O.D. x 3.4mm, ZINC (#500138)	
-2.5x16, HEX HD., ZINC, C8.8 (#500189)	
NAME DATE DRAWN DLM 4-5-10 CHECKED 5450 Louie Ln Reno, NV 89511 775.852.0200 www.WindspireEnergy.com	FOUNDATON
Install Install <thinstall< th=""> <thinstall< th=""> <thinstall< th=""></thinstall<></thinstall<></thinstall<>	
COMMENTS: BIZE DWG. NO. B 800040 A	
2 WEIGHT: SHEET 1 OF 1	

Foundation Analysis

For

30 FOOT WINDSPIRE (1.2KW)

April 2, 2010

Dennis Montgomery, P.E. NCEES #31559

Prepared by:

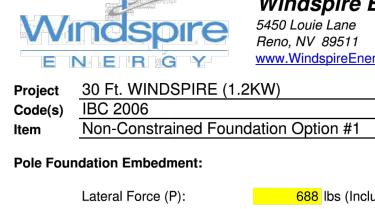
Windspire Energy 5450 Louie Lane Reno, NV 89511 Phone: (775) 852-0200 Fax: (775) 201-0467 www.WindspireEnergy.com

Windspire Energy Proprietary & Confidential – Distribution allowed only with written approval of Windspire Energy. Intended for Windspire Energy Dealer's use in obtaining building permits and associated project approvals.

Static Load Case (105 mph):

Pole Foundation Size:

Rotor Force @ 20' Ht = 665 lbf (2958 N) Base Pole @ 5' Ht. = 92 lbf (409 N)

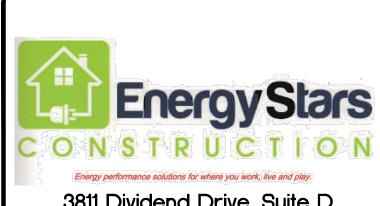

Opt. #1 - Nonconstrained Pole Foundation: 2'-0" Diam. x 7'-0" Depth

Opt. #3 - Square Pad Foundation: 4'-9" Sq. x 1'-3" Depth with 2'-0" Diam. Pedestal

Opt. #2 - Constrained* Pole Foundation: 2'-0" Diam. x 5'-6" Depth

Windspire Energy 5450 Louie Lane

		5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.cor	<u>n</u>	F	•	5) 852-0200 5) 201-0467
Project	30 Ft. WINDSPIRE (1.2KW)		Project No.		Sheet	
Code(s)	As Stated		Designed	DLM	Date	04/2010
Item	Foundation Design		Checked		Date	
Design C	-	105 mph (47 m/s) 'C' II	ed worst case	soils))	
Pole Four	ndation Analysis Summary:					



Lateral Forc		688	lb	
Force Heigh		20	ft	
Footing Diar		2	ft	
Assumed Ft	g. Depth (d):		7.0	ft
Soil Lateral):	200	ps	
Max. Soil La	ateral Pressur	e:	3000	ps
S ₁ =	468.864 psf	(1/3*d*\$	Sb)	
A =	1.7	(2.34*P	⁄/(S₁*b)))

d =

Pole Foundation: 2'-0" Diam. x 7'-0" Depth

Attachment 5 - Page 5 of 9

3811 Dividend Drive, Suite D Shingle Springs, CA 95682

License Number: 950064 www.energystarsconstruction.com

Grant Gluck 916.275.3559 grant@energystarsconstruction.com

1175 Elko Dr. Sunnyvale, CA

7.7.15 Date

FOUNDATION

DESIGN

WT-5

FOUNDATION DESIGN

Windspire Energy

www.WindspireEnergy.com

Phone (775) 852-0200 Fax (775) 201-0467 Sheet DLM Date 04/2010 Date

lbs (Including base pole wind load transposed to 20' height)

Project No.

Designed

Checked

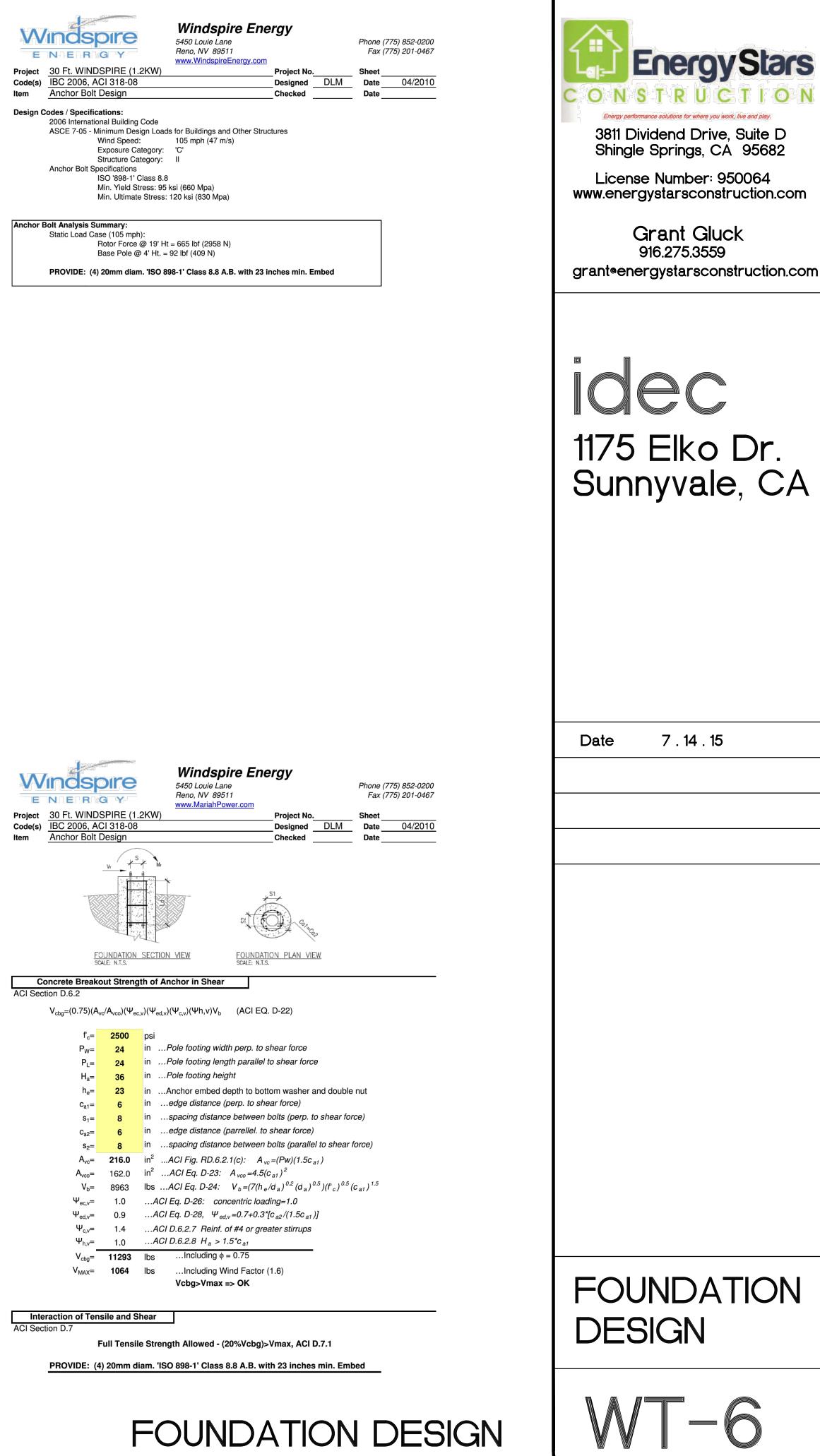
psf/ft (Increased per IBC 1804.3.1, allowing 0.5" displacement) psf (IBC 1804.3.1)

7.0 ft (IBC Eq. 18-1, REQUIRED DEPTH) d=0.5*A*(1+(1+(4.36*h/A))^0.5)

osone

Windspire Energy 5450 Louie Lane Reno, NV 89511

E		Reno, NV 89511 www.WindspireEnergy.cc	<u></u>	Phone (775) 8 Fax (775) 2	
Project Code(s) Item	30 Ft. WINDSPIRE (1.2 IBC 2006 Constrained Foundation		Project No. Designed DL Checked	Sheet M Date0 Date	4/2010
Constrai	ned Pole Foundation Embed	dment:			
	Lateral Force (P):	688 lbs (Including	base pole wind load	transposed to 20' I	neight)
	Force Height (h):	<mark>20</mark> ft			
	Footing Diameter (b):	<mark>2</mark> ft			
	Assumed Ftg. Depth (d):	<mark>5.3</mark> ft			
	Soil Lateral Pressure (Sb):	200 psf/ft (Increas	ed per IBC 1804.3.1	, allowing 0.5" disp	lacement)
	Max. Soil Lateral Pressure:	3000 psf (IBC 1804	.3.1)		
	S ₃ = 1052 psf (S	₃=d*Sb)			

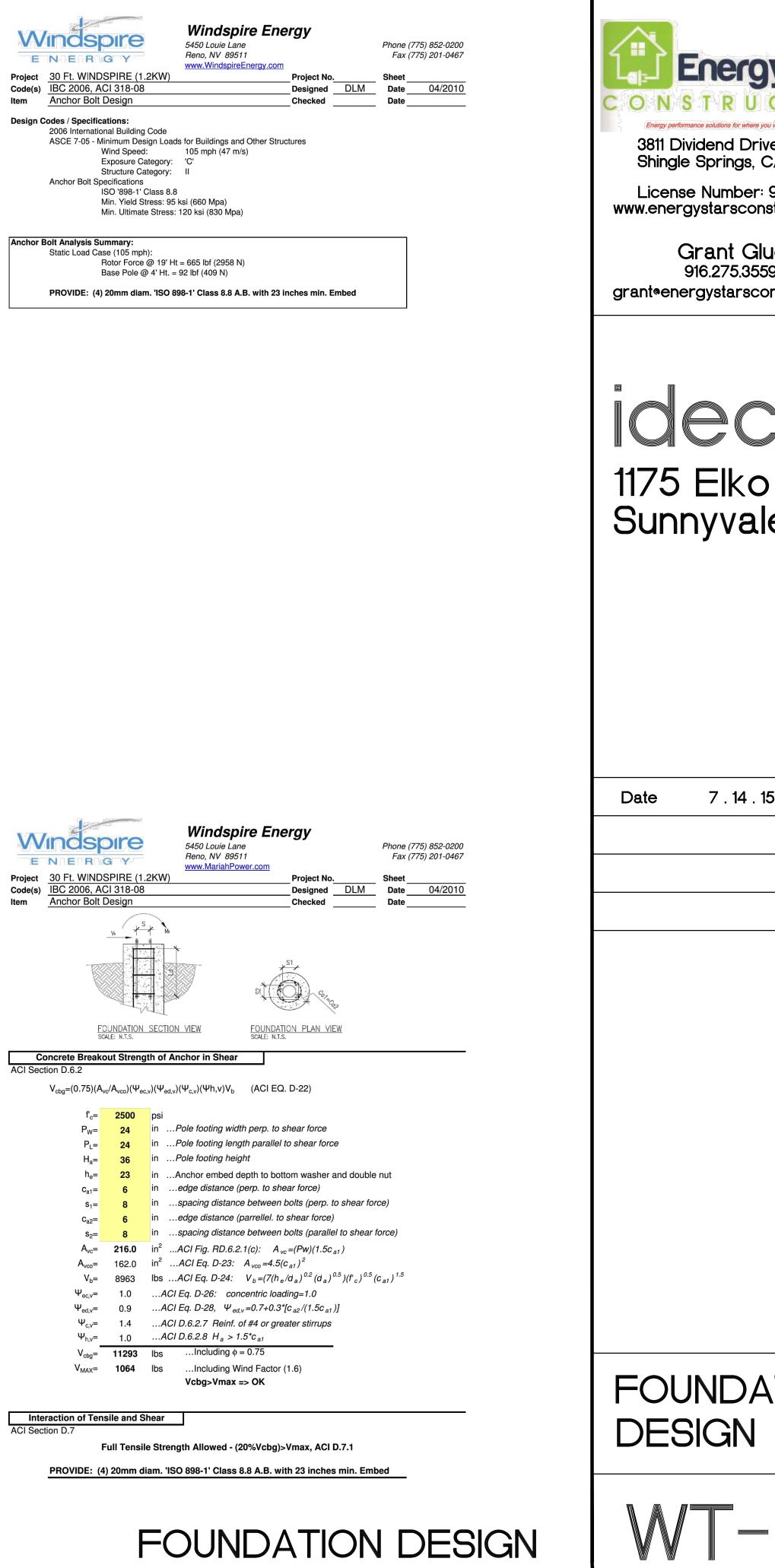

5.3 ft (IBC Eq. 18-2, REQUIRED DEPTH; d=(4.25*(P*h/(S₃*b)))^0.5) d =

*For constrained condition, concrete or pavement slab is required at all sides of pole foundation.

Constrained* Pole Foundation: 2'-0" Diam. x 5'-6" Depth

Project Code(s) Item	30 Ft. WIND IBC 2006, A0 Anchor Bolt		Windspire 5450 Louie Lane Reno, NV 89511 www.WindspireEner		Phone (775) 852-0200 Fax (775) 201-0467 Sheet Date 04/2010 Date
		v. + s + M			
	R		3	RT COLOR	
		FOUNDATION SECTION		FOUNDATION PLAN VIEW scale: n.t.s.	
	ion Anchor Be ulting Forces	-			
	Shear (V_{20}) =	0.665 k@1	9 ft		
	Shear $(V_5) =$	0.092 k@4			
	Shear $(V_T) =$	0.757 k (4 b	olts in shear)		
I	Moment (M _T)	13.00 k*ft			
	s ₁ =	8 in	anchor bolt spacing.		
-	Tension (T) =	19.50 k (2 b	olts in tension)		
Anch	or Bolt Steel C	Capacity			
ACI Sect	ions D5.1 & D.	6.1			
4	of	0.787 Diam.	ISO 898-1 Class 8.8	Anchor Bolts, $F_t = 0.33F_u$;	$F_v = 0.17F_u$
	A.B. allowal A.B. allow	ble tension: 19.5 able shear: 9.9	k/bolt k/bolt	(ASD Value; Table I-B) (ASD Value; Table I-D)	
	T _{ALLOW} =	38.9 k	Tallow>T => OK		
	V _{ALLOW} =	39.7 k	Vallow>V => OK		
Tens	ion & Shear=	0.3 <1	COMBINED STRE	SS OK	
Concre		Strength (Tension			
ACI Sect		Development Le	-	orcement for Tension)	
Acrocol	lon D.o.z (nd. I _d =	-		.2.2, #6 Bar or smaller)	
	T _{ALLOW} =	38.9 k			
	T _{REQ'D} =	19.5 k			
			Minimum of 12" (ACI	12.2.5)	
	l _d = I _h =	17.4 inches	s s (horizontal distance	to rainforcias)	
	'h=	5.0 inches	(nonzontal distance	to remorcing)	
	PROVIDE:	23 " MIN	OF LAP DISTANCE	=	

W E		Windspire Energy 5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.com	Phone (775) 852-0200 Fax (775) 201-0467
Project	30 Ft. WINDSPIRE (1.2K)	· ·	Sheet
Code(s) Item	IBC 2006 Pad Foundation Option #3	Designed DLM Checked	_ Date04/2010 Date
	.		
Square P	ad Foundation:		
	Lateral Force (P _H):	688 lbs (Including base pole wind load tra	nsposed to 20' height)
	Force Height (h):	<mark>20</mark> ft	
	Overturning Moment (Mo):	13760 lbs*ft	
	Vertical Force (P_v) :	630 lbs	
	Assumed Ftg. Width (b):	4.75 ft (square)	
	Assumed Ftg. Depth (d):	<mark>1.3</mark> ft	
	Assumed Ped. Diam. (D _P):	<mark>2.0</mark> ft	
	Assumed Ped. Height (H_P) :	<mark>3.0</mark> ft	
	Concrete Density (γ_c) :	150 pcf	
	Soil Density (γ_s) :	110 pcf	
	Soil Lateral Pressure (Sb):	200 psf/ft (Increased per IBC 1804.3.1, al	owing 0.5" displacement)
	Soil Brg. Pressure (S _{brg}):	1500 psf (IBC 1804.3.1)	
	Total Vertical Force $(P_{vT}) =$	10547 lbs	
		$P_{vt} = P_v + (b^2 d^* \gamma_c) + ((D_p^2)/4^* \pi^* H_p^* \gamma_c) - b_{vt} + b_{$	$-((b^2-(D_p^2)/4^*\pi)^*(H_p-1)^*\gamma_s))$
	Resisting Moment (M_R) = Overturning Mement (M_o) =	22544 lbs.*ftM _R =0.9*P _{vt} *b/2 13760 lbs.*ft	
	O.T.M. Factor of Safety =	1.6	
	Sliding Resistence (V _r) =	2847.632 lbsV _r =0.9*P _{νT} *0.3	
	Sliding Factor of Safety =	4.1	
	Bearing Eccentricity (e) = Soil Bearing Pressure =	1.3 ft $e = M_o/P_{vT}$ 1383 psf $= P_{vT}/(b^*(3^*(b/2-e)/2))$ Bearing Pressure => OK	



Square Pad Foundation: 4'-9" Sq. x 1'-3" Depth with 2'-0" Diam. Pedestal

Project Code(s) Item	30 Ft. WIND IBC 2006, Au Anchor Bolt	SPIRE (1 CI 318-08		Windspire E. 5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.c	07	d DLM		75) 852-0200 75) 201-0467 04/2010
	t Strength of A tion D.5.3	nchor in	Tension					
	$\Psi_{c,P} = W_d$ $A_{brg} = f'_c = -$	1.0 2.00 2.7 2500	in in ² psi	Conservatively taken washer diameter Bearing area Abr	n at 1.0 (crac g = PI*(Wd^2))	
	N _p = N _{pn} = T _{MAX} =	53103 39827 15604	lbs Ibs Ibs		=8*Abrg*fc n=φΨ _{c,P} *Np ed (1.6) T	(φ = 0.75) max =1.6*T/2	*1000	

in Ten	sion			
ACI Section D.5.4				
C _{a1} =	6	in	edge distance (perp. to shear force)	
C _{a2} =	6	in	edge distance (parrallel to shear force)	
$\lambda =$	1.0		Lightweight concrete factor (1.0 if normal weight)	
N _{sb} =	39107	lbs	ACI Eq. D-17 $N_{sb} = 160 c_{a1}^{*} (A_{brg})^{.5*} \lambda^{*} (f'c)^{.5*} (1+c_{a2}^{-}/c_{a1}^{-})/4$	
N _{sbg} =	35848	lbs	ACI Eq. D-18 $N_{sbg} = \phi(1+s/(6^*c_{a1}))^*N_{sb}$ ($\phi = 0.75$)	
T _{MAX} =	31207	lbs	LRFD Factor Included (1.6) Tmax =1.6*T*1000 Nsbg>Tmax => OK	

Side-face Blowout Strength of Anchor

(0.75)(A	م _{vc} /A _{vco})(۲
f'c=	2500
P _w =	24
$P_L =$	24
H _a =	36
h _e =	23
C _{a1} =	6
\$ ₁ =	8
C _{a2} =	6
\$ ₂ =	8
A _{vc} =	216.0
A _{vco} =	162.0
V _b =	8963
$\Psi_{ec,v}=$	1.0
$\Psi_{ed,v}=$	0.9
$\Psi_{c,v}=$	1.4
$\Psi_{h,v}=$	1.0
$V_{cbg} =$	1129
V _{MAX} =	1064

Attachment	5 - Page	<u>6 of 9</u>
	0	

e (P) S

Lateral Load Analysis For

30 FOOT WINDSPIRE (1.2KW)

April 2, 2010

Dennis Montgomery, P.E. NCEES #31559

Prepared by:

Windspire Energy 5450 Louie Lane Reno, NV 89511 Phone: (775) 852-0200 Fax: (775) 201-0467 www.WindspireEnergy.com

Windspire Energy Proprietary & Confidential – Distribution allowed only with written approval of Windspire Energy. Intended for Windspire Energy Dealer's use in obtaining building permits and associated project approvals.

			Windspire Ene 5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.co			. ,	852-0200 201-0467
ct (s)	30 Ft. W As State Seismic		2KW)	Project No. Designed Checked	DLM	Sheet _ Date _ Date _	04/2010
ada	Input						
ode Class		ALL D					
	S _S = S ₁ =	3.000 1.300	(Worst Case Design) (Worst Case Design)				
	F _a = F _v =	1.00 1.50	(Table 11.4-1 from ASCE (Table 11.4-2 from ASCE				
	S _{MS} = S _{M1} =	3.000 1.950	$S_{MS} = F_a S_S$ $S_{M1} = F_v S_1$	(Eqn's 11.4-1	& 11.4-2	, ASCE 7	7)
	S _{DS} = S _{D1} =	2.000 1.300	$S_{DS} = \frac{2}{3} S_{MS}$ $S_{D1} = \frac{2}{3} S_{M1}$				
	Seisr	mic Design Catego	ory (for seismic use group I,	or II) =>	F		
	R = =	1 put 2.5 1.0	(Table 12.2-1, ASCE 7)				
	W = H = T = C _{s max} = C _{s min} =	630 lbf 30 ft 0.43 s 1.22 0.26	(Eq. 12.8-7, ASCE 7) (Eq. 12.8-3, ASCE 7) (Eq. 12.8-6, ASCE 7)				
	C _s =	0.800	(Eq. 12.8-2, ASCE 7)		C		
	V =	0.571 x W		V =	$=\frac{C_s}{1.4}W$	modified	for ASD

E		5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.co			ax (775)) 852-0200) 201-0467			5450 Louie La Reno, NV 893 <u>www.Windspir</u>
Project	30 Ft. WINDSPIRE (1.2) As Stated	(W)	Project No.		Sheet	04/2010	Project	30 Ft. WINDSPIRE (1.) IBC 2006; ASCE 7-05	2KW)
Code(s) Item	Lateral Loading - Summa	arv	_ Designed Checked	DLM	Date_	04/2010	Code(s) Item	Wind Load Diagram	
nem	Lateral Loading Commi		_Ollecked		Date_		item	Wind Load Diagram	
Static De	sign Codes / Specifications ¹ : 2006 International Building Co ASCE 7-05 - Minimum Design Wind Speed: Exposure Category: Structure Category: Seismic S _{DS} : Seismic S _{D1} :	ode	Other Structure	2S					665 lbs Ht. = 19'-0"
Dynamic	Design Codes / Specification "MPG Report Analysis 2", Se CARDAAV Code Analysis So Wind Speed: Wind Speed Ref. Ht:	pt. 6, 2007. Dr. Ion Parash ftware 34 mph (15 m/s)	ivoiu						92 lbs
Load Ana	Ilysis Summary (Wind Govern Static Load Case (105 mph): Rotor Force @ 20' Ht Base Pole @ 5' Ht. = 9	= 665 lbf (2958 N) 92 lbf (409 N)							\$ * 105 * Expo * Cate
	Dynamic Load Case (34 mph Rotor Force @ 20' Ht		@ Rotational C	Componen	ts				127 lbs Ht. = 19'-0"

(1): Mechanical Brake is engaged at rotor revolutions greater than 400 rpm, approximately equal to 34 mph (15 m/s) wind speed as determined from CARDAAV Code Analysis. Therefore, wind speeds up to 34 mph (15 m/s) shall result in dynamic wind loads and wind speeds in excess of 34 mph (15 m/s) shall result in static wind loads.

Windspire Energy 5450 Louie Lane

		S450 Louie Lane Reno, NV 89511 www.WindspireEr	nergy.com		•	75) 852-0200 75) 201-0467
Project	30 Ft. WINDSPIR	E (1.2KW)	Project No.		Sheet	
Code(s)	IBC 2006; ASCE	7-05	Designed	DLM	Date	04/2010
ltem	Ice + Wind Load	Calculation	Checked		Date	
Design:	50 MPH WIND,	Static Design Wi	nd Load Condit	ion		
K _z = K _{zt} =		velocity pressure coefficie (Avg. rotor height = topographic factor (see A	<mark>20</mark> ft Exposure	e 'C')	6-3)	
K _d =	- 0.85	$K_1 = 0.0$ K (topographic effect - verify wind directionality factor (- ∕ w/ site specific	conditions		
l =	- 1.0	(Lattice Framework) Importance factor (from A (Category II Structure)	SCE 7-05 Table	6-1)		
V =	= 50 mph	3-second gust (Concurrent Wind Speed	with Ice Loading)		
q _z =	4.9 psf	ASCE 7-05 Eq. 6-15	$q_z = 0.0025$	$6 K_z K_{zt} K$	$K_d V^2 I$	
G = F =		gust-effect factor (from A ASCE 7-05 Eq. 6-28	SCE 7-05 Section $F = q_z G C_f A$,		

		Wind 5450 Lou Reno, N www.Wir
Project	30 Ft. WINDSPIRE (1	
Code(s)	IBC 2006; ASCE 7-05	5
Item	Ice + Wind Load Calc	ulation

5450 Lou Reno, NV www.Win

	12.4 10.0	
Base Pole + Ice =		
Base Pole =		
$V_i =$	4238	in ³ (ASC
		IEC 614
# of Struts =	8.0	(including
Length =		
Airfoil Structs + Ice =	2.5	in (chord
Airfoil Struts =	0.25	in (thickne
$V_i =$	15771	in ³ (ASC
		IEC 614
Ht. =	20	ft
Center Pole + Ice =		
Rotor Center Pole =	3.5	in (diam.)

)' Ht. (19' from steel base plate) Base Pole Force = 30 lbs @ 5' Ht. (4' from steel base plate)

t _d =	
Vindspire Profile:	
Airfoils =	
Airfoils + Ice =	
Ht. =	
# of Foils =	
C₄ =	

l_i = 1.0

6.5 ft

Ice + Wind Load:

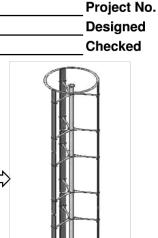
Ice Load:

3 C_f = 1.7 ...IEC 61400 Force Coefficients V_i = 13985 in³ (ASCE 7-05, Eq. 10-2)

13.8 in (chord width + ice)

t = 1.0 in. (ASCE 7-05, Figure 10-2)

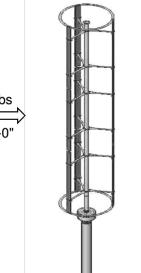
1.9 in. (ASCE 7-05, Eq. 10-5)


10 in (total chord width profile)

 $f_z = 0.95$ (ASCE 7-05, Eq. 10-4)

Attachment 5 - Page 7 of 9

e Lane 89511 spireEnergy.com


Sheet DLM Date 04/2010 Date

Phone (775) 852-0200

Fax (775) 201-0467

xposure 'C' ategory II Structure

Dynamic (Cyclic) Loading * Extrapolated Dynamic Wind Force, "MPG Report Analysis 2" * 34 mph (15 m/s) Dynamic Wind Speed @ 400 rpm

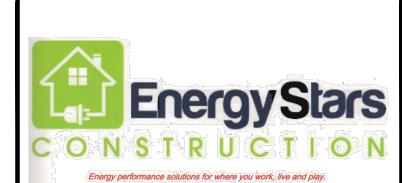
Windspire Energy

ule Lane IV 89511		•	775) 852-0200
ndspireEnergy.com		Fax (7	775) 201-0467
Project No.		Sheet	
Designed	DLM	Date	04/2010
Checked		Date	

n.) . + ice)

1400 Force Coefficients SCE 7-05, Eq. 10-2)

ness) l width + ice)


ng top and bottom safety rings) 1400 Force Coefficients CE 7-05, Eq. 10-2)

n.) . + ice)

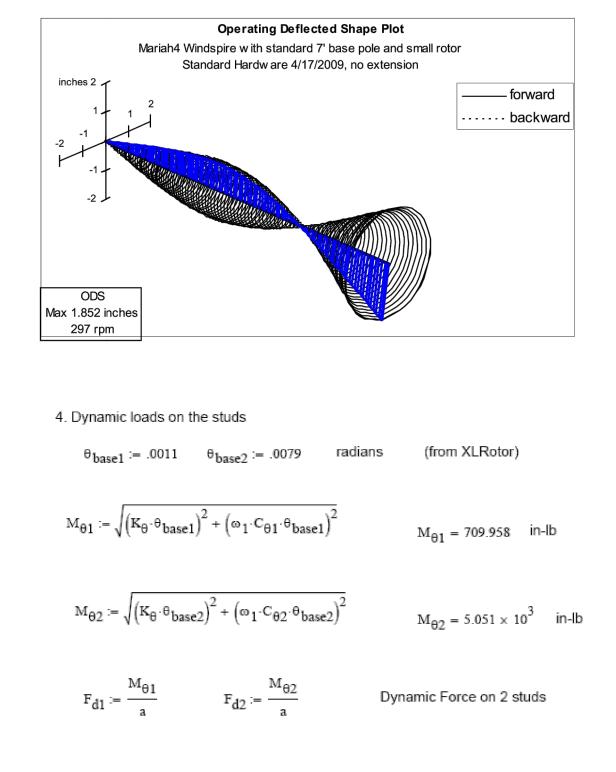
1400 Force Coefficients CE 7-05, Eq. 10-2)

rtical)

3811 Dividend Drive, Suite D Shingle Springs, CA 95682

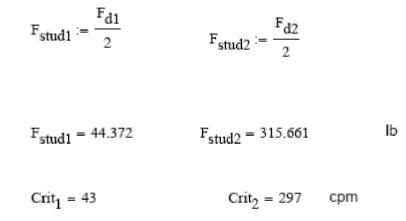
License Number: 950064 www.energystarsconstruction.com

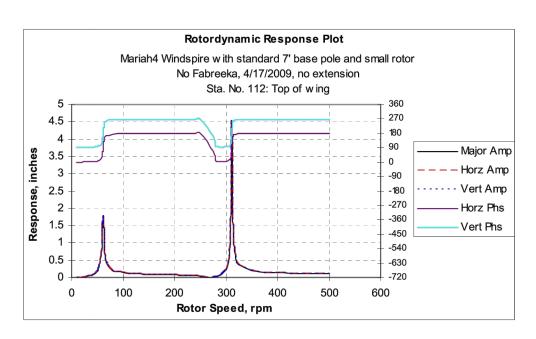
Grant Gluck 916.275.3559 grant@energystarsconstruction.com

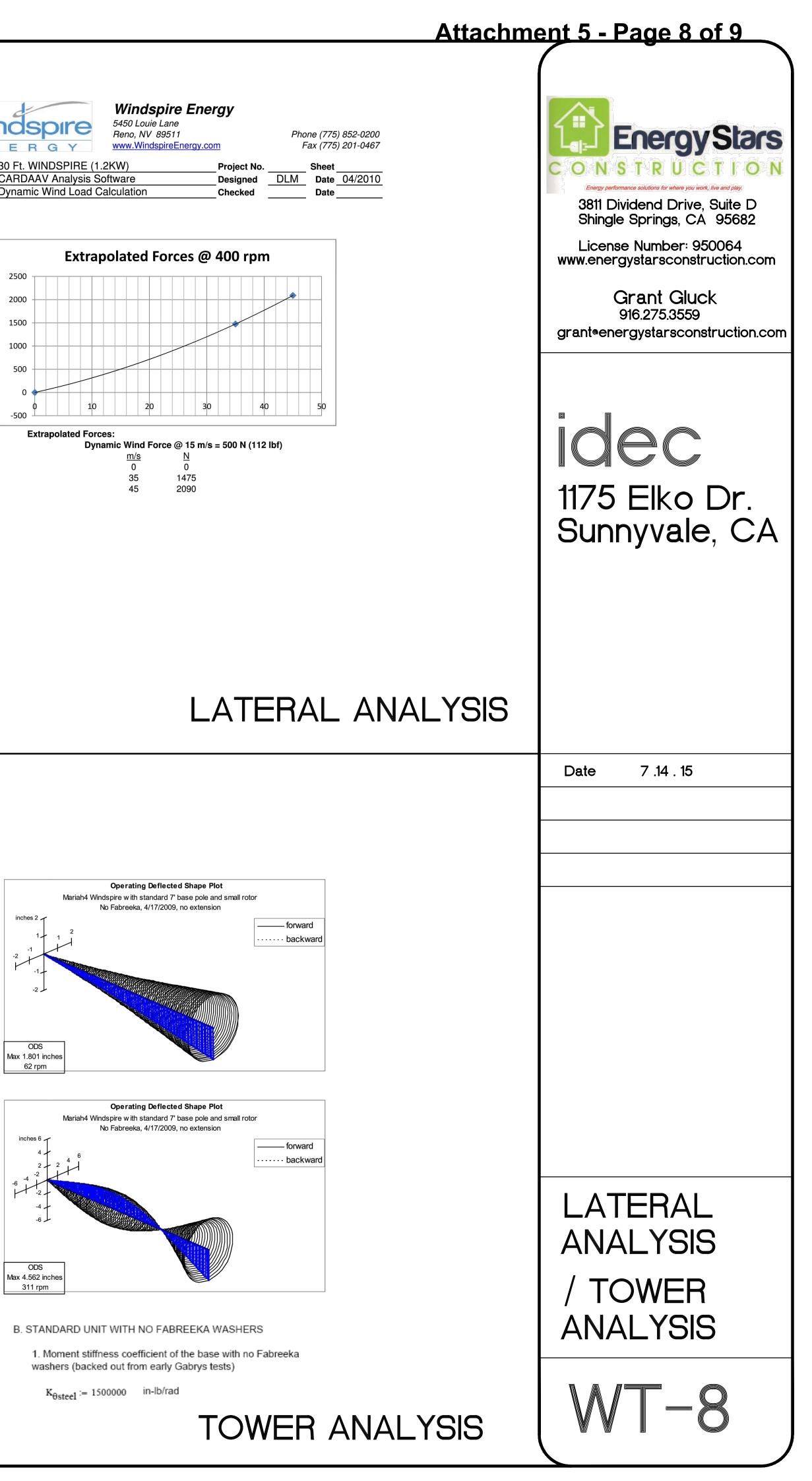

1175 Elko Dr. Sunnyvale, CA

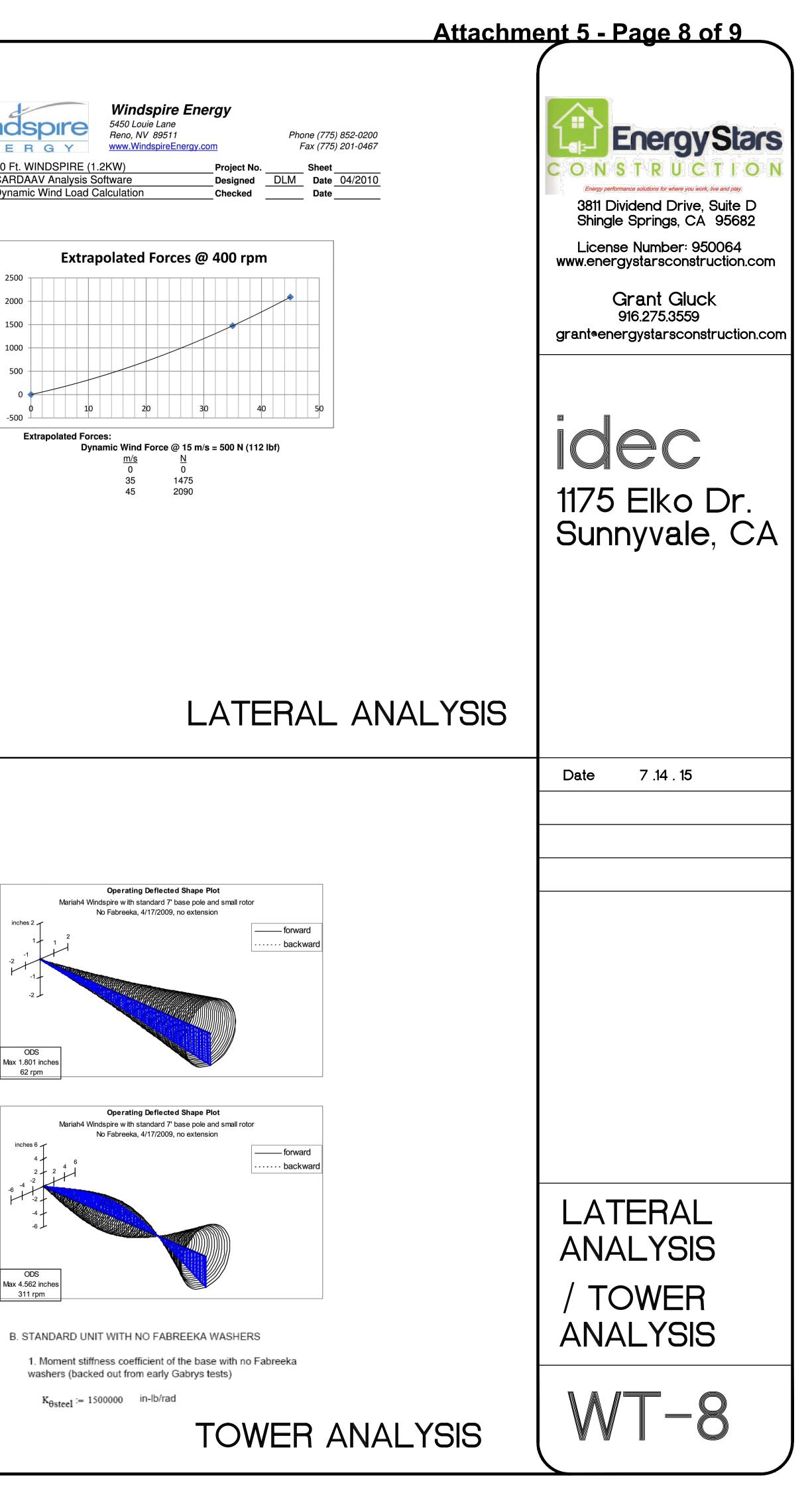
Date 7 . 14 . 15

LATERAL ANALYSIS


		5450 Louie Lane Reno, NV 89511 www.WindspireEnd			•	75) 852-0200 75) 201-0467
Project Code(s)	30 Ft. WINDSPIR IBC 2006; ASCE	1 /	Project No Designed	DLM	Sheet Date	04/2010
Item	Static Wind Load		Checked		Date	04/2010
Design:	105 MPH WIND,	Static Design Wir	d Load Condit	ion		
K _z =	0.90	velocity pressure coefficie (Avg. rotor height = 2			6-3)	
K _{zt} =	1.0	topographic factor (see A $K_1 = 0.0$ K_2 (topographic effect - verify	= 1.0	K ₃ =	1.0	
K _d =		wind directionality factor ((Lattice Framework))	
=	1.0	Importance factor (from A (Category II Structure)	SCE 7-05 Table	9 6-1)		
V =	105 mph	3-second gust (Maximum Designed Wind	d Speed)			
q _z =	21.6 psf	ASCE 7-05 Eq. 6-15	$q_z = 0.0025$	$6 K_z K_{zt} K$	$\int_{d} V^{2} I$	
G = F =		gust-effect factor (from AS ASCE 7-05 Eq. 6-28	SCE 7-05 Section $F = q_z G C_f A$			
Static Wir	nd Load:					
	Windspire Profile: Airfoils = Ht. = # of Foils = C _f =	= 6.5 ft				
	Rotor Center Pole = Ht. = C _f =		e Coefficients			
	Length = = # of Struts	 0.25 in (thickness) 2.9 ft 8.0 (including top and 1.5IEC 61400 Force 		ngs)		
	Ht. =	 8.625 in (diam.) 10.0 ft 0.7IEC 61400 Force 	e Coefficients			
	Rotor Force =	665 lbs @ 20' Ht. (19'	from steel base	e plate)		
	Base Pole Force =	= 92 lbs @ 5' Ht. (4' fro	m steel base p	olate)		


(continued next page)


	Windspire Energy 5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.com		ne (775) 8 Fax (775) 2			Vir N		C 5450 L Reno, www.V
Project30 Ft. WINDSPIRE (1.2)Code(s)IBC 2006; ASCE 7-05ItemDynamic Wind Load Ca	Designed	DLM	Sheet Date0 Date	4/2010	Proje Code Item	e(s) (30 Ft. WINDSPIF CARDAAV Analy Dynamic Wind Lo	sis Software
Dynamic Wind Load: (15 m/s & 400 r	rpm)							
Rotor Force: -Dynamic (Cyclic) Force -	- Ref. "MPG Report Analysis 2", 09-06-2	2007, Dr. P	arashivoiu)			Ех	ktrapolate
Extrapolation of Dynamic W 35 m/s, 400 rpm = 332 45 m/s, 400 rpm = 470	<mark>2</mark> lbs (1475 N)						2500	
Extrapolated to 15 m/s = 112	<mark>2</mark> lbs (500 N)						1500	
Ht. = 20	5 in (diam.) 0 ft 3 …IEC 61400 Force Coefficients						1000	
	4 mph (15 m/s)						500	
Drag Force @ 15 m/s = 15	5 lbs						-500	10
Dynamic Rotor Force = 127	7 lbs @ 20' Ht. (19' from steel base pl	late)				L	Extrapolate	d Forces: Dynamic Wir


35 45

Tower Analysis For 30 FOOT WINDSPIRE (1.2KW)

April 2, 2010

Dennis Montgomery, P.E. NCEES #31559

Prepared by:

Windspire Energy 5450 Louie Lane Reno, NV 89511 Phone: (775) 852-0200 Fax: (775) 201-0467 www.WindspireEnergy.com

Windspire Energy Proprietary & Confidential – Distribution allowed only with written approval of Windspire Energy. Intended for Windspire Energy Dealer's use in obtaining building permits and associated project approvals.

Windspire Energy 5450 Louie Lane Reno, NV 89511

Phone (775) 852-0200 Fax (775) 201-0467

Project	30 Ft. WINDSPIRE (1.2KW)	Project No.	Sheet
Code(s)	IBC 2006	Designed DLN	Date 04/2010
ltem	Tower Design	Checked	Date

www.WindspireEnergy.com

Base Plate Design Per AISC - Design Guide 1:

P =	0.60	K 0.8
f' _c =	2.50	ksi ta kata kata kata kata kata kata kata
Base Plate Width (N=B) =	10.00	in (square)
		-≳ 0.4
F _p =	1.75	ksi = $0.7^* f'_c$ \approx
M + PA' =	158	in*kip(Assume A' = 4")
F _p *B*N' ² =	1264	in*kip(Assume N' = 8.5")
B =	0.125	$\dots = (M + PA')/(F_{a} * B * N'^{2})$
A/N' =	0.300	(Figure 16) A
A =	2.550	in = (A/N')*N' Fig. 16. Design Aidfor Axial Load Plus Moment
$\alpha =$	0.9	
T =	20.1	kips = (M+P*A')/(α*N') - P
$D_{cr} =$	0.90	in = (B-0.95*OD)/2
σ ₁ =	1.278	ksi = $(F_p/A)^*(OD/2-(N/2-A))$
M _{PL} =	0.65	in*kip/in = $(\sigma_1 D_{cr}^2)/2 + ((F_p - \sigma_1) D_{cr}^2 0.67)/2$
Min. Base Plate (t _p)=	0.38	in = $((6^*M_{PL})/(0.75^*f_{yPL}))^{0.5}$

Provide: ASTM A500 Grade B, 8.625" x 0.188" Wall Tower w/ 0.188" Fillet Weld 1" x 10" x 10" ASTM A36 Steel Base Plate

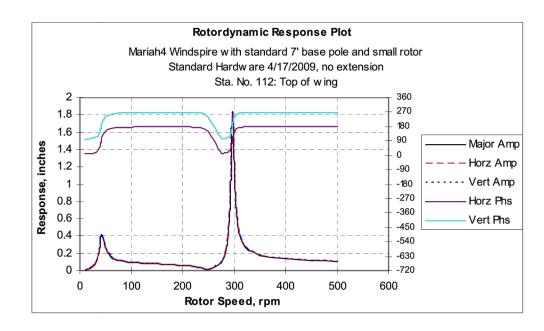
Windspire
ENERGY

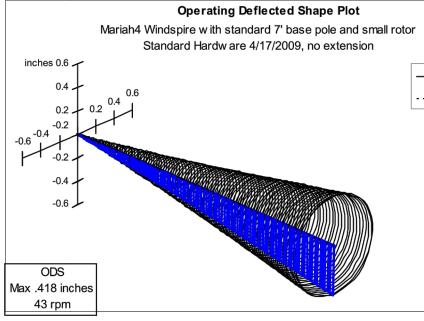
		5450 Louie Lane Reno, NV 89511 www.WindspireEnergy.com		Ph		i) 852-0200 i) 201-0467
Project	30 Ft. WINDSPIRE (1.2KV	V)	Project No.		Sheet	
Code(s)	As Stated		Designed	DLM	Date	04/2010
Item	Tower Design		Checked		Date	
	2006 International Building Cod AISC Steel Column Base Plate ASCE 7-05 - Minimum Design L Wind Speed:	Design Guide 1	structures			
	Exposure Category: Structure Category:	'C'				
	Tower Steel & Weld Material (A		min.)			
	Weld Filler Material: E		/			

Weld Filler Material: E70xx (fy = 70 ksi) Steel Base Plate: ASTM A36

Pole Foundation Analysis Summary:

Static Load Case (105 mph): Rotor Force @ 20' Ht = 665 lbf (2958 N) Base Pole @ 5' Ht. = 92 lbf (409 N)


Tower Size, Base Weld, & Base Plate: Provide: ASTM A500 Grade B, 8.625" x 0.188" Wall Tower w/ 0.188" Fillet Weld 1" x 10" x 10" ASTM A36 Steel Base Plate


		e	5450 Louie Lane Reno, NV 89511 www.WindspireEne
Project Code(s) Item	30 Ft. WINDSPIF IBC 2006 Tower Design	RE (1.2k	(W)
Tower S		0.005	L O 10 ft
	Shear (V_{20}) = Shear (V_5) =	0.665 0.092	k@19ft k@4ft
	atic Moment (M_T) = mic Moment (M_D) =	13.00 0.42	k*ft k*ft …(Rotordyna
Dyna		8.625	in
	Tower I.D. =	8.249	in in ⁴ = $\pi^*(OD^4-$
	ι _T = σ _T =	44.36 15.17	ksi = M_{T} *12*(C
	$\sigma_{\rm D}$ =	0.49	ksi = M _D *12*(C
	Allowable $\sigma_T =$	25.20	
	Allowable $\sigma_D =$	2.50	ksi(AWS D14.4
	:	8.625x0.	188 Wall Tower Ol

<u>Veld Stress:</u>		
S _w =	61.00	$in^2 = \pi^*(0)$
$\sigma_{WT/in} =$	2.56	k/in = M ₁
$\sigma_{WD/in}$ =	0.08	k/in = M _c
Weld Thickness (W_T) =	0.188	in
Allowable $\sigma_{WT/in} =$	2.79	k/in= 0.7
Allowable $\sigma_{WD/in} =$	0.47	k/in= (2.

Base Weld OK

A. STANDARD UNIT WITH FABREEKA WASHERS: Whirl Amplitudes and Dynamic Loads at the Base Plate

Attachment I

Attachment 5 - Page 9 of 9

Windspire Energy

39511

ireEnergy.com Sheet Project No. Designed DLM Date 04/2010 Checked Date ordynamic Analysis, Attached) \longrightarrow (OD^4-ID^4)/64 _T*12*(OD/2)/I_T _o*12*(OD/2)/I_T S(fy) S D14.4, Table 5) ver OK \implies $(OD/2+W_{T}/2)^{2}$ M_T*12/S_W M_D*12/S_W

Phone (775) 852-0200

Fax (775) 201-0467

.707*0.3*W_T*70 2.5 ksi)*W_T

_____ forward ····· backward

The providence solutions for where you work live and play. 3811 Dividend Drive, Suite D
Shingle Springs, CA 95682 License Number: 950064 www.energystarsconstruction.com Grant Gluck 916.275.3559 grant@energystarsconstruction.com
<image/> i cicc 1175 Elko Dr. Sunnyvale, CA
Date 7.14.15
/ TOWER ANALYSIS